Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

biochemistry, genetics and molecular biology

Intrinsic type 1 interferon (Ifn1) profile of uncultured human bone marrow cd45lowcd271+ multipotential stromal cells (bm-mscs): The impact of donor age, culture expansion and ifnα and ifnβ stimulation

Biomedicines, Volume 8, No. 7, Article 214, Year 2020

Skeletal aging is associated with reduced proliferative potential of bone marrow (BM) multipotential stromal cells (MSCs). Recent data suggest the involvement of type 1 interferon (IFN1) signalling in hematopoietic stem cell (HSC) senescence. Considering that BM-HSCs and BM-MSCs share the same BM niche, we investigated IFN1 expression profile in human BM-MSCs in relation to donor age, culture-expansion and IFN1 (α and β) stimulation. Fluorescence-activated cell sorting was used to purify uncultured BM-MSCs from younger (19–41, n = 6) and older (59–89, n = 6) donors based on the CD45lowCD271+ phenotype, and hematopoietic-lineage cells (BM-HLCs, CD45+CD271−) were used as controls. Gene expression was analysed using integrated circuits arrays in sorted fractions as well as cultured/stimulated BM-MSCs and Y201/Y202 immortalised cell lines. IFN1 stimulation led to BM-MSC growth arrest and upregulation of many IFN1-stimulated genes (ISGs), with IFNβ demonstrating stronger effects. Uncultured MSCs were characterised by a moderate-level ISG expression similar to Y201 cells. Age-related changes in ISG expression were negligible in BM-MSCs compared to BM-HLCs, and intracellular reactive oxygen species (ROS) levels in BM-MSCs did not significantly correlate with donor age. Antiaging genes Klotho and SIRT6 correlated with more ISGs in BM-MSCs than in BM-HLCs. In patients with osteoarthritis (OA), BM-MSCs expressed considerably lower levels of several ISGs, indicating that their IFN1 signature is affected in a pathological condition. In summary, BM-MSCs possess homeostatic IFN1 gene expression signature in health, which is sensitive to in vitro culture and external IFN1 stimulation. IFN signalling may facilitate in vivo BM-MSC responses to DNA damage and combating senescence and aberrant immune activation.
Statistics
Citations: 6
Authors: 6
Affiliations: 4
Identifiers
Research Areas
Genetics And Genomics