Publication Details

AFRICAN RESEARCH NEXUS

SHINING A SPOTLIGHT ON AFRICAN RESEARCH

earth and planetary sciences

HERSCHEL OBSERVATIONS of MAJOR MERGER PAIRS at z = 0: DUST MASS and STAR FORMATION

Astrophysical Journal, Supplement Series, Volume 222, No. 2, Article 16, Year 2016

We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral-spiral (S+S) pairs and 44 spiral-elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (Mdust) are derived from the IR SED fitting. The mass of total gas (Mgas) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk-disk collision in the interaction-induced star formation. The Mgas of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR.

Statistics
Citations: 24
Authors: 16
Affiliations: 14
Identifiers